高数上费马定理是什么

数学2023-05-15 19:54
费马定理即费马大定理,由17世纪法国数学家皮耶·德·费马提出。它断言当整数n>2时,关于x、y、z的方程x^n+y^n=z^n没有正整数解。经历多人猜想辩证,历经三百多年的历史,最终在1993年被英国数学家安德鲁·怀尔斯

费马定理即费马大定理,由17世纪法国数学家皮耶·德·费马提出。它断言当整数n>2时,关于x、y、z的方程x^n+y^n=z^n没有正整数解。经历多人猜想辩证,历经三百多年的历史,最终在1993年被英国数学家安德鲁·怀尔斯证明。

什么是费马大定理

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

公元17世纪,法国数学家皮耶·德·费马提出费马猜想,但没有给出证明。1678年G·W莱布尼兹证明了n=4时定理成立。1770年C·欧拉证明了n=3和4的情形,P·G狄利克雷和G·拉梅分别证明了n=5和7的情形。

1884年E·E库默尔创立了理想数,从而证明了当n是介于2与100之间的奇数p除去(p=37,59和67)时,定理成立。1995年,安德鲁·怀尔斯等人将费马猜想证明过程发表在《数学年刊》,成功证明了这一定理。

费马大定理表述虽简单,但它的证明耗费了数代人的努力,许多数学家在证明过程中发现了许多新的数学理论,拓展了新的数学方法,证明费马大定理的过程可以算得上是一部数学史。

费马对数论的贡献

(1)全部素数可分为4n+1和4n+3两种形式。

(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。

(3)没有一个形如4n+3的素数,能表示为两个平方数之和。

(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。

(5)边长为有理数的直角三角形的面积不可能是一个平方数。

(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表。