16个基本导数公式 有哪些计算公式

公式大全2024-09-14 10:54
基本导数公式(y:原函数;y\':导函数):1、y=c,y\'=0(c为常数)。2、y=x^μ,y\'=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y\'=a^x lna;y=e^x,y\'=e^x。4、y=logax,y\'=1/(xlna)(a>0且a≠1);y=lnx,

基本导数公式(y:原函数;y':导函数):1、y=c,y'=0(c为常数)。2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x等。

求导公式有哪些

c'=0(c为常数)

(x^a)'=ax^(a-1),a为常数且a≠0

(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1

(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

(cotx)'=-(cscx)^2

(cscx)'=-csxcotx

(arcsinx)'=1/√(1-x^2)

(arccosx)'=-1/√(1-x^2)

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(shx)'=chx

(chx)'=shx

(uv)'=uv'+u'v

(u+v)'=u'+v'

(u/)'=(u'v-uv')/^2

导数基本公式整理

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

4.y=logax y'=logae/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=e^x y'=e^x

10.y=lnx y'=1/x

导数的基本性质:

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

(3)可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。