一个矩阵中行秩与列秩是相等的,矩阵的行秩与列秩统称为矩阵的秩。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。
矩阵秩的定理
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
矩阵的秩是什么意思
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。这是矩阵的秩的定义,但是看上去比较难以理解。
一般的矩阵是m*n的类型,还有一种就是方阵,方阵就是特殊的矩阵,指的是行数和列数相等的矩阵,对于这两种矩阵而言,矩阵的秩也有着很大的区别。
对于方阵(行数、列数相等)的A矩阵而言,矩阵的秩就是用R(A)来表示。
对于m*n的A矩阵而言,矩阵的秩有多种情况,最大是m和n中的较小的一个数值,我们称尽可能大的秩的矩阵为满秩,那不满足的话就被称为秩不足。